390 research outputs found

    Constraining scalar fields with stellar kinematics and collisional dark matter

    Full text link
    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass mϕm_\phi and the self-interacting coupling constant λ\lambda of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nucleiComment: 23 pages, 8 figures; accepted for publication by JCAP after minor change

    Tidal Capture by a Black Hole and Flares in Galactic Centres

    Full text link
    We present the telltale signature of the tidal capture and disruption of an object by a massive black hole in a galactic centre. As a result of the interaction with the black hole's strong gravitational field, the object's light curve can flare-up with characteristic time of the order of 100 sec \times (M_{bh} / 10^6 M_{Solar}). Our simulations show that general relativity plays a crucial role in the late stages of the encounter in two ways: (i) due to the precession of perihelion, tidal disruption is more severe, and (ii) light bending and aberration of light produce and enhance flares seen by a distant observer. We present our results for the case of a tidally disrupted Solar-type star. We also discuss the two strongest flares that have been observed at the Galactic centre. Although the first was observed in X-rays and the second in infra-red, they have almost identical light curves and we find it interesting that it is possible to fit the infra-red flare with a rather simple model of the tidally disrupted comet-like or planetary object. We discuss the model and possible scenarios how such an event can occur.Comment: 3 pages, 1 figur

    Periastron shift in Weyl class spacetimes

    Full text link
    The periastron position advance for geodesic motion in axially symmetric solutions of the Einstein field equations belonging to the Weyl class of vacuum solutions is investigated. Explicit examples corresponding to either static solutions (single Chazy-Curzon, Schwarzschild and a pair of them), or stationary solution (single rotating Chazy-Curzon and Kerr black hole) are discussed. The results are then applied to the case of S2-SgrA^* binary system of which the periastron position advance will be soon measured with a great accuracy.Comment: To appear on General Relativity and Gravitation, vol. 37, 200

    Estimating the parameters of the Sgr A* black hole

    Full text link
    The measurement of relativistic effects around the galactic center may allow in the near future to strongly constrain the parameters of the supermassive black hole likely present at the galactic center (Sgr A*). As a by-product of these measurements it would be possible to severely constrain, in addition, also the parameters of the mass-density distributions of both the innermost star cluster and the dark matter clump around the galactic center.Comment: Accepted for publication on General Relativity and Gravitation, 2010. 11 Pages, 1 Figur

    Evolution of supermassive black holes

    Full text link
    Supermassive black holes (SMBHs) are nowadays believed to reside in most local galaxies, and the available data show an empirical correlation between bulge luminosity - or stellar velocity dispersion - and black hole mass, suggesting a single mechanism for assembling black holes and forming spheroids in galaxy halos. The evidence is therefore in favour of a co-evolution between galaxies, black holes and quasars. In cold dark matter cosmogonies, small-mass subgalactic systems form first to merge later into larger and larger structures. In this paradigm galaxy halos experience multiple mergers during their lifetime. If every galaxy with a bulge hosts a SMBH in its center, and a local galaxy has been made up by multiple mergers, then a black hole binary is a natural evolutionary stage. The evolution of the supermassive black hole population clearly has to be investigated taking into account both the cosmological framework and the dynamical evolution of SMBHs and their hosts. The seeds of SMBHs have to be looked for in the early Universe, as very luminous quasars are detected up to redshift higher than z=6. These black holes evolve then in a hierarchical fashion, following the merger hierarchy of their host halos. Accretion of gas, traced by quasar activity, plays a fundamental role in determining the two parameters defining a black hole: mass and spin. A particularly intriguing epoch is the initial phase of SMBH growth. It is very challenging to meet the observational constraints at z=6 if BHs are not fed at very high rates in their infancy.Comment: Extended version of the invited paper to appear in the Proceedings of the Conference "Relativistic Astrophysics and Cosmology - Einstein's Legacy

    Neutrino Clustering in the Galaxy with a Global Monopole

    Get PDF
    In spherically symmetric, static spacetime, we show that only j=1/2 fermions can satisfy both Einstein's field equation and Dirac's equation. It is also shown that neutrinos are able to have effective masses and cluster in the galactic halo when they are coupled to a global monopole situated at the galactic core. Astronomical implications of the results are discussed.Comment: 8 pages, Revtex

    Profiles of emission lines generated by rings orbiting braneworld Kerr black holes

    Full text link
    In the framework of the braneworld models, rotating black holes can be described by the Kerr metric with a tidal charge representing the influence of the non-local gravitational (tidal) effects of the bulk space Weyl tensor onto the black hole spacetime. We study the influence of the tidal charge onto profiled spectral lines generated by radiating tori orbiting in vicinity of a rotating black hole. We show that with lowering the negative tidal charge of the black hole, the profiled line becomes to be flatter and wider keeping their standard character with flux stronger at the blue edge of the profiled line. The extension of the line grows with radius falling and inclination angle growing. With growing inclination angle a small hump appears in the profiled lines due to the strong lensing effect of photons coming from regions behind the black hole. For positive tidal charge (b>0b>0) and high inclination angles two small humps appear in the profiled lines close to the red and blue edge of the lines due to the strong lensing effect. We can conclude that for all values of bb, the strongest effect on the profiled lines shape (extension) is caused by the changes of the inclination angle.Comment: Accepted by General Relativity and Gravitatio

    Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    Full text link
    Observations have established that extremely compact, massive objects are common in the universe. It is generally accepted that these objects are black holes. As observations improve, it becomes possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or with gravitational-waves) and to test whether they have the characteristics of black hole orbits in general relativity. Such measurements can be used to map the spacetime of a massive compact object, testing whether the object's multipoles satisfy the strict constraints of the black hole hypothesis. Such a test requires that we compare against objects with the ``wrong'' multipole structure. In this paper, we present tools for constructing bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. The spacetimes which we present are good deep into the strong field of the object -- we do not use a large r expansion, except to make contact with weak field intuition. Also, our spacetimes reduce to the black hole spacetimes of general relativity when the ``bumpiness'' is set to zero. We propose bumpy black holes as the foundation for a null experiment: if black hole candidates are the black holes of general relativity, their bumpiness should be zero. By comparing orbits in a bumpy spacetime with those of an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are the black holes of general relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
    corecore